Guided genetic algorithm for the multidimensional knapsack problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAnt Algorithm for the Multidimensional Knapsack Problem
We propose a new algorithm based on the Ant Colony Optimization (ACO) meta-heuristic for the Multidimensional Knapsack Problem, the goal of which is to find a subset of objects that maximizes a given objective function while satisfying some resource constraints. We show that our new algorithm obtains better results than two other ACO algorithms on most instances.
متن کاملA Weight-Coded Evolutionary Algorithm for the Multidimensional Knapsack Problem
A revised weight-coded evolutionary algorithm (RWCEA) is proposed for solving multidimensional knapsack problems. This RWCEA uses a new decoding method and incorporates a heuristic method in initialization. Computational results show that the RWCEA performs better than a weight-coded evolutionary algorithm proposed by Raidl (1999) and to some existing benchmarks, it can yield better results tha...
متن کاملGreedy algorithm for the general multidimensional knapsack problem
In this paper, we propose a new greedy-like heuristic method, which is primarily intended for the general MDKP, but proves itself effective also for the 0-1 MDKP. Our heuristic differs from the existing greedy-like heuristics in two aspects. First, existing heuristics rely on each item’s aggregate consumption of resources to make item selection decisions, whereas our heuristic uses the effectiv...
متن کاملA genetic programming hyper-heuristic for the multidimensional knapsack problem
Hyper-heuristics are a class of high-level search techniques which operate on a search space of heuristics rather than directly on a search space of solutions. Early hyperheuristics focussed on selecting and applying a low-level heuristic at each stage of a search. Recent trends in hyper-heuristic research have led to a number of approaches being developed to automatically generate new heuristi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Memetic Computing
سال: 2017
ISSN: 1865-9284,1865-9292
DOI: 10.1007/s12293-017-0232-7